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ON WEAKLY 2-ABSORBING PRIMARY IDEALS OF

COMMUTATIVE RINGS

Ayman Badawi, Unsal Tekir, and Ece Yetkin

Abstract. Let R be a commutative ring with 1 6= 0. In this paper,
we introduce the concept of weakly 2-absorbing primary ideal which is
a generalization of weakly 2-absorbing ideal. A proper ideal I of R is
called a weakly 2-absorbing primary ideal of R if whenever a, b, c ∈ R and

0 6= abc ∈ I, then ab ∈ I or ac ∈
√
I or bc ∈

√
I. A number of results

concerning weakly 2-absorbing primary ideals and examples of weakly
2-absorbing primary ideals are given.

1. Introduction

We assume throughout this paper that all rings are commutative with 1 6= 0.
Let R be a commutative ring. An ideal I of R is said to be proper if I 6= R.
Let I be a proper ideal of R. Then

√
I = {r ∈ R : rk ∈ I for some k ∈ N}

denotes the radical ideal of R and ZI(R) = {r ∈ R | rs ∈ I for some s ∈ R\ I}.
Note that

√
0 is the set (ideal) of all nilpotent elements of R. The concept of

2-absorbing ideal, which is a generalization of prime ideal, was introduced by
Badawi in [5] and studied in [3], [12], and [8]. Various generalizations of prime
ideals are also studied in [1] and [9].

Recall that a proper ideal I of R is called a 2-absorbing ideal of R if whenever
a, b, c ∈ R and abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. Recently (see [7]), the
concept of 2-absorbing ideal is extended to the context of 2-absorbing primary
ideal which is a generalization of primary ideal. Recall from [7] that a proper
ideal of R is said to be a 2-absorbing primary ideal of R if whenever a, b, c ∈ R
with abc ∈ I, then ab ∈ I or ac ∈

√
I or bc ∈

√
I. Recall from [2] ([4]) that

a proper ideal I of R is called a weakly prime ideal (weakly primary ideal) if

whenever 0 6= ab ∈ I, then a ∈ I or b ∈ I (a ∈ I or b ∈
√
I). The concept of

weakly prime ideal was extended to the context of weakly 2-absorbing ideal.
Recall from [6] that a proper ideal I of R is said to be a weakly 2-absorbing
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ideal of R if whenever 0 6= abc ∈ I, then ab ∈ I or ac ∈ I or bc ∈ I. In this
paper, we extend the concept of weakly 2-absorbing ideal to the context of
weakly 2-absorbing primary ideal. A proper ideal I of R is said to be a weakly

2-absorbing primary ideal of R if whenever a, b, c ∈ R with 0 6= abc ∈ I implies
ab ∈ I or ac ∈

√
I or bc ∈

√
I.

Note that every 2-absorbing primary ideal is clearly a weakly 2-absorbing
primary ideal. However, the converse is not true. For example, 0 is always
a weakly 2-absorbing primary ideal of R, but it is not always a 2-absorbing
primary ideal.

Among many results in this paper, it is shown (Example 2.6) that the radical
of a weakly 2-absorbing primary ideal of a ring R need not be a weakly 2-
absorbing ideal of R. It is shown (Theorem 2.7) that if I is a proper ideal of

R such that
√
I is a weakly prime ideal of R, then I is a weakly 2-absorbing

primary ideal of R. It is shown (Theorem 2.10) that if I is a weakly 2-absorbing
primary ideal of R that is not 2-absorbing primary, then I3 = 0. It is shown
(Example 2.11) that if I3 = 0 for some proper ideal I of R, then I need not be a

weakly 2-absorbing primary ideal of R. It is shown (Theorem 2.14) that if
√
0 is

prime and I is a proper ideal of R, then I is a weakly 2-absorbing primary ideal
of R if and only if I is a 2-absorbing primary ideal. If R = R1 × · · · ×Rn, then
a complete characterization of the nonzero weakly 2-absorbing primary ideals
of R is determined (Theorem 2.21–Theorem 2.24). It is shown (Theorem 2.25)
that every proper ideal of R = R1 ×R2 ×R3 is a weakly 2-absorbing primary
ideal of R if and only if R1, R2, and R3 are fields. It is shown (Theorem 2.26)
that if every proper ideal of R is weakly 2-absorbing primary, then R has at
most three incomparable (under inclusion) prime ideals (and hence at most
three distinct maximal ideals). It is shown (Theorem 2.30) that if I is a weakly
2-absorbing primary ideal of R and 0 6= I1I2I3 ⊆ I for some ideals I1, I2, I3
of R such that I is free triple-zero with respect to I1I2I3, then I1I2 ⊆ I or
I1I3 ⊆

√
I or I2I3 ⊆

√
I. In the last section, we give alternative proofs to some

results in [2].

2. Weakly 2-absorbing primary ideals

Definition 2.1. A proper ideal I of R is called a weakly 2-absorbing primary

ideal of R if whenever a, b, c ∈ R and 0 6= abc ∈ I, then ab ∈ I or ac ∈
√
I or

bc ∈
√
I.

Definition 2.2. Let I be a weakly 2-absorbing primary ideal of R. We say
(a, b, c) is a triple-zero of I if abc = 0, ab 6∈ I, bc 6∈

√
I, and ac 6∈

√
I.

Note that if I is a weakly 2-absorbing primary ideal of R that is not 2-
absorbing primary ideal, then there exists a triple-zero (a, b, c) of I for some
a, b, c ∈ R.

We start with the following result. We omit the proof since it is clear by
definitions.
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Theorem 2.3. Let I be a proper ideal of R. Then

(1) If I is a weakly prime ideal, then I is a weakly 2-absorbing primary

ideal.

(2) If I is a weakly 2-absorbing ideal, then I is a weakly 2-absorbing pri-

mary ideal.

(3) If I is a weakly primary ideal, then I is a weakly 2-absorbing primary

ideal.

(4) If I is a 2-absorbing ideal, then I is a weakly 2-absorbing primary ideal.

(5) If I is a 2-absorbing primary ideal, then I is a weakly 2-absorbing

primary ideal.

Recall that a ring R is called quasilocal if it has exactly one maximal ideal.
The proof of the following result is clear, and hence we omit the proof.

Theorem 2.4. Let R be a quasilocal ring with maximal ideal
√
0. Then every

proper ideal of R is a weakly 2-absorbing primary ideal of R.

Theorem 2.5. Let I be a proper ideal of R. Then
√
I is a weakly 2-absorbing

ideal of R if and only if
√
I is a weakly 2-absorbing primary ideal of R.

Proof. Since
√√

I =
√
I, the proof is completed. �

If I is a 2-absorbing primary ideal of R, then
√
I is a 2-absorbing ideal of

R by [7, Theorem 2.2]. However, if I is a weakly 2-absorbing primary ideal,

then
√
I need not be a weakly 2-absorbing ideal of R. We have the following

example.

Example 2.6. Let A = Z2[X,Y,W ] and I = X2Y 2W 2A be an ideal of A. Let
R = A/I. Then I/I is the zero ideal of R, and hence 0 is a weakly 2-absorbing

primary ideal of R. We show that
√
0 (in R)= XYWA/I is not a weakly

2-absorbing ideal of R. For in the ring R, we have 0 6= XYW + I ∈
√
0, but

XY + I 6∈
√
0, XW + I 6∈

√
0, and YW + I 6∈

√
0. Thus

√
0 (in R) is not a

weakly 2-absorbing ideal of R.

Let I be a proper ideal of R. Since
√
I =

√√
I, it is clear that

√
I is a

weakly prime ideal of R if and only if
√
I is a weakly primary ideal of R. Hence

we have the following result.

Theorem 2.7. Let I be a proper ideal of R such that
√
I is a weakly prime

(weakly primary) ideal of R. Then I is a weakly 2-absorbing primary ideal of

R.

Proof. Suppose that 0 6= abc ∈ I for some a, b, c ∈ R and ab 6∈ I. Suppose that
ab 6∈

√
I. Since

√
I is a weakly prime ideal of R, we have c ∈

√
I, and thus

ac ∈
√
I. Suppose that ab ∈

√
I. Since 0 6= abc ∈ I and ab ∈

√
I, we have

0 6= ab ∈
√
I. Since

√
I is a weakly prime ideal of R and 0 6= ab ∈

√
I, we have

a ∈
√
I or b ∈

√
I. Thus ac ∈

√
I or bc ∈

√
I. Thus I is a weakly 2-absorbing

primary ideal of R. �
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Theorem 2.8. Let I be a weakly primary ideal of R that is not primary and

J be an ideal of R such that J ⊆ I. Then J is a weakly 2-absorbing primary

ideal of R. In particular, if L is an ideal of R, then A = I ∩L and B = IL are

weakly 2-absorbing primary ideals of R.

Proof. Since I is a weakly primary ideal of R that is not primary,
√
I =

√
0 by

[4, Theorem 2.2]. Hence
√
J =

√
I =

√
0. Let 0 6= abc ∈ J for some a, b, c ∈ R

and suppose that ab 6∈ J . Since J ⊆ I, we have 0 6= abc ∈ I. We consider two
cases. Case one: Suppose that ab 6∈ I. Since I is weakly primary and ab 6∈ I,
we have c ∈

√
J =

√
I =

√
0. Thus ac ∈

√
J . Case two: Suppose that ab ∈ I.

Since 0 6= abc ∈ I, we have 0 6= ab ∈ I. Since I is a weakly primary ideal of R,
we have a ∈ I ⊆

√
0 or b ∈

√
0. Thus ac ∈

√
J or bc ∈

√
J . Thus J is a weakly

2-absorbing primary ideal of R. The proof of the “in particular statement”is
clear since A,B ⊆ I. �

Theorem 2.9. Let I be a weakly 2-absorbing primary ideal of R and suppose

that (a, b, c) is a triple-zero of I for some a, b, c ∈ R. Then

(1) abI = bcI = acI = 0.
(2) aI2 = bI2 = cI2 = 0.

Proof. (1) Suppose that abI 6= 0. Then there exists i ∈ I such that abi 6= 0.
Hence ab(c+ i) 6= 0. Since ab 6∈ I and I is weakly 2-absorbing primary, we have

a(c+ i) ∈
√
I or b(c+ i) ∈

√
I. So ac ∈

√
I or bc ∈

√
I, a contradiction. Thus

abI = 0. Similarly it can be easily verified that bcI = acI = 0.
(2) Suppose that ai1i2 6= 0 for some i1, i2 ∈ I. Hence from (1) we have

a(b + i1)(c + i2) = ai1i2 6= 0. It implies either a(b + i1) ∈ I or a(c + i2) ∈
√
I

or (b + i1)(c+ i2) ∈
√
I. Thus ab ∈ I or ac ∈

√
I or bc ∈

√
I, a contradiction.

Therefore aI2 = 0. Similarly, one can easily show that bI2 = cI2 = 0. �

Theorem 2.10. If I is a weakly 2-absorbing primary ideal of R that is not

2-absorbing primary, then I3 = 0.

Proof. Suppose that I is a weakly 2-absorbing primary ideal that is not a 2-
absorbing primary ideal of R. Then there exists (a, b, c) a triple-zero of I for
some a, b, c ∈ R. Assume that I3 6= 0. Hence i1i2i3 6= 0 for some i1, i2, i3 ∈ I.
By Theorem 2.9, we obtain (a + i1)(b + i2)(c + i3) = i1i2i3 6= 0. This implies

that (a+ i1)(b+ i2) ∈ I or (a+ i1)(c+ i3) ∈
√
I or (b+ i2)(c+ i3) ∈

√
I. Thus

we have ab ∈ I or ac ∈
√
I or bc ∈

√
I, a contradiction. Thus I3 = 0. �

Corollary 2.11. If I is a weakly 2-absorbing primary ideal of R that is not

2-absorbing primary, then
√
I =

√
0.

Recall that a ring R is said to be reduced if
√
0 = 0.

Corollary 2.12. Let R be a reduced ring and I 6= 0 be a proper ideal of R.

Then I is a weakly 2-absorbing primary ideal if and only if I is a 2-absorbing

primary ideal of R.
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The following example shows that a proper ideal I of R with the property
I3 = 0 need not be a weakly 2-absorbing primary ideal of R. We have the
following example.

Example 2.13. Let R = Z90. Then I = {0, 30, 60} is an ideal of R and clearly

I3 = 0. Since 0 6= 2 · 3 · 5 = 30 ∈ I, 2 · 3 = 6 /∈ I, 2 · 5 = 10 /∈
√
I, and

3 · 5 = 15 /∈
√
I, we conclude that I is not a weakly 2-absorbing primary ideal

of R.

Let I be a proper ideal of R. Since
√√

I =
√
I, we remind the reader again

that
√
I is a prime ideal of R if and only if

√
I is a primary ideal of R. We

have the following result.

Theorem 2.14. Suppose that
√
0 is a prime (primary) ideal of R. Let I be

a proper ideal of R. Then I is a weakly 2-absorbing primary ideal of R if and

only if I is a 2-absorbing primary ideal of R.

Proof. Suppose that I is a weakly 2-absorbing primary ideal of R. Assume
that abc ∈ I for some a, b, c ∈ R. If 0 6= abc ∈ I, then ab ∈ I or ac ∈

√
I

or bc ∈
√
I. Hence assume that abc = 0 and ab 6∈ I. Since abc = 0 and

√
0

is a prime ideal of R, we conclude that a ∈
√
0 or b ∈

√
0 or c ∈

√
0. Since√

0 ⊆
√
I, we conclude that ac ∈

√
0 ⊆

√
I or bc ∈

√
0 ⊆

√
I. Thus I is a

2-absorbing primary ideal of R. The converse is clear. �

Theorem 2.15. Suppose that {0} has a triple-zero (a, b, c) for some a, b, c ∈ R

such that ab 6∈
√
0. Let I be a weakly 2-absorbing primary ideal of R. Then I

is not a 2-absorbing primary ideal of R if and only if I ⊆
√
0.

Proof. Suppose that I is not a 2-absorbing primary ideal of R. Then I ⊆
√
0 by

Corollary 2.11. Conversely, suppose that I ⊆
√
0. By hypothesis, we conclude

that ab 6∈ I, ac 6∈
√
0, and bc 6∈

√
0. Thus (a, b, c) is a triple-zero of I. Hence I

is not a 2-absorbing primary ideal of R. �

Theorem 2.16. Let I1, I2, . . . , In be weakly 2-absorbing primary ideals of R
such that every Ii is not 2-absorbing primary. Then I = ∩n

i=1Ii is a weakly

2-absorbing primary ideal of R.

Proof. Observe that
√
Ii =

√
0 for each 1 ≤ i ≤ n by Corollary 2.11. Thus√

I =
√
0. Suppose that a, b, c ∈ R with 0 6= abc ∈ I and ab 6∈ I. Then ab 6∈ Ik

for some 1 ≤ k ≤ n. Hence bc ∈
√
Ik =

√
0 =

√
I or ac ∈

√
Ik =

√
0 =

√
I .

Hence I is a weakly 2-absorbing ideal of R. �

Theorem 2.17. Let f : R → R′ be a homomorphism of commutative rings.

Then the following statements hold.

(1) If f is a monomorphism and J ′ is a weakly 2-absorbing primary ideal

of R′, then f−1(J ′) is a weakly 2-absorbing primary ideal of R.
(2) If f is an epimorphism and J is a weakly 2-absorbing primary ideal of

R containing Ker(f), then f(J) is a weakly 2-absorbing primary ideal

of R′.
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Proof. (1) Let a, b, c ∈ R such that 0 6= abc ∈ f−1(J ′). Since Ker(f) = 0,

we get 0 6= f(abc) = f(a)f(b)f(c) ∈ J
′

. Hence we have f(a)f(b) ∈ J
′

or

f(b)f(c) ∈
√
J ′ or f(a)f(c) ∈

√
J ′ , and thus ab ∈ f−1(J ′) or bc ∈ f−1(

√
J ′)

or ac ∈ f−1(
√
J ′). Since f−1(

√
J ′) =

√

f−1(J ′), we conclude that f−1(J ′) is
a weakly 2-absorbing primary ideal of R.

(2) Let a′, b′, c′ ∈ R′ and 0 6= a′b′c′ ∈ f(J). Then there exist a, b, c ∈ R
such that f(a) = a′, f(b) = b′, f(c) = c′ and 0 6= f(abc) = a′b′c′ ∈ f(J).

Since Ker(f) ⊆ J , we have 0 6= abc ∈ J . It implies that ab ∈ J or ac ∈
√
J

or bc ∈
√
J . It means that a′b′ ∈ f(J) or a′c′ ∈ f(

√
J) ⊆

√

f(J) or b′c′ ∈
f(
√
J) ⊆

√

f(J). Thus f(J) is a weakly 2-absorbing primary ideal of R′. �

Theorem 2.18. Let I, J be proper ideals of R with I ⊆ J . Then the followings

statements hold.

(1) If J is a weakly 2-absorbing primary ideal of R, then J/I is a weakly

2-absorbing primary ideal of R/I.
(2) If I is a 2-absorbing primary ideal of R and J/I is a weakly 2-absorbing

primary ideal of R/I, then J is a 2-absorbing primary ideal of R.

(3) If I is a weakly 2-absorbing primary ideal of R and J/I is a weakly 2-

absorbing primary ideal of R/I, then J is a weakly 2-absorbing primary

ideal of R.

Proof. (1) It is obtained from Theorem 2.17.

(2) Let a, b, c ∈ R and abc ∈ J . If abc ∈ I, then ab ∈ I ⊆ J or bc ∈
√
I ⊆

√
J

or ac ∈
√
I ⊆

√
J . So we may assume that abc /∈ I. Then we have I 6=

(a+ I)(b+ I)(c+ I) ∈ J/I. Since J/I is a weakly 2-absorbing primary ideal of

R/I, we conclude (a+I)(b+I) = ab+I ∈ J/I or (a+I)(c+I) = ac+I ∈
√

J/I

or (b+I)(c+I) = bc+I ∈
√

J/I. It follows that ab ∈ J or ac ∈
√
J or bc ∈

√
J .

Thus J is a 2-absorbing primary ideal of R.
(3) Let a, b, c ∈ R and 0 6= abc ∈ J . Then by a similar argument as in (2),

J is a weakly 2-absorbing primary ideal of R. �

If I, J are weakly 2-absorbing primary ideals of a ring R such that
√
I =

√
J ,

then I + J need not be a weakly 2-absorbing primary ideal of R. We have the
following example.

Example 2.19. Let A = Z2[T, U,W,X, Y ], H = (T 2, U2,WXY + T +
U, TU, TW , TX, TY, UW,UX,UY )A be an ideal of A, and R = A/H . Then
by construction of R, I = (TA+H)/H = {0, T +H} and J = (UA+H)/H =
{0, U +H} are weakly 2-absorbing primary ideals of R such that |I| = |J | = 2

and
√
I =

√
J =

√
0 (in R) = (T, U,WXY )A/H . Let L = I + J = (H +

(T, U)A)/H . Then
√
L =

√
0 (in R) and L is not a weakly 2-absorbing primary

ideal of R. For 0 6= (W +H)(X +H)(Y +H) = WXY +H = T +U +H ∈ L,

but WX +H 6∈ L, WY +H 6∈
√
L, and XY +H 6∈

√
L.
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For a commutative ring with 1 6= 0, let Z(R) be the set of all zero-divisors
of R.

Theorem 2.20. Let S be a multiplicatively closed subset of R. Then

(1) If I is a weakly 2-absorbing primary ideal of R with I ∩ S = ∅, then
S−1I is a weakly 2-absorbing primary ideal of S−1R.

(2) If S−1I is a weakly 2-absorbing primary ideal of S−1R such that S ∩
ZI(R) = ∅ and S ∩Z(R) = ∅, then I is a weakly 2-absorbing primary

ideal of R.

Proof. (1) Let a, b, c ∈ R, s, t, k ∈ S such that 0 6= a
s
b
t
c
k
∈ S−1I. Then there

exists u ∈ S such that 0 6= uabc ∈ I. Since I is a weakly 2-absorbing primary
ideal, we get either uab ∈ I or bc ∈

√
I or uac ∈

√
I. If uab ∈ I, then

a
s
b
t
= uab

ust
∈ S−1I. If bc ∈

√
I, then b

t
c
k
∈ S−1

√
I =

√
S−1I. If uac ∈

√
I, then

a
s
c
k
= uac

usk
∈
√
S−1I.

(2) Let a, b, c ∈ R such that 0 6= abc ∈ I. Since S ∩ Z(R) = ∅, we have

0 6= abc
1

= a
1
b
1
c
1

∈ S−1I. It follows either a
1
b
1

∈ S−1I or b
1
c
1

∈
√
S−1I or

a
1
c
1
∈
√
S−1I. If a

1
b
1
= ab

1
∈ S−1I, then uab ∈ I for some u ∈ S. Since u ∈ S

and S ∩ ZI(R) = ∅, we conclude ab ∈ I. If b
1
c
1
= bc

1
∈
√
S−1I = S−1

√
I, then

there exists v ∈ S and a positive integer n such that (vbc)n = vnbncn ∈ I. Since

v ∈ S, we have vn 6∈ ZI(R). Thus bncn ∈ I, and so bc ∈
√
I. If a

1
c
1
∈
√
S−1I ,

then similarly we obtain ac ∈
√
I, and it completes the proof. �

Theorem 2.21. Let R1 and R2 be commutative rings with 1 6= 0, I be a proper

ideal of R1, and R = R1 ×R2. Then the following statements are equivalent.

(1) I ×R2 is a weakly 2-absorbing primary ideal of R.
(2) I ×R2 is a 2-absorbing primary ideal of R.
(3) I is a 2-absorbing primary ideal of R1.

Proof. (1)⇒(2) Since I × R2 6⊆
√
0, we conclude that I × R2 is a 2-absorbing

primary ideal of R by Corollary 2.11.
(2)⇒(3) Suppose that I is not a 2-absorbing primary ideal of R1. Then there

exist a, b, c ∈ R1 such that abc ∈ I, but ab /∈ I, bc /∈
√
I, and ac /∈

√
I. Since

(a, 1)(b, 1)(c, 1) ∈ I×R2, we have (a, 1)(b, 1) = (ab, 1) ∈ I×R2 or (a, 1)(c, 1) =

(ac, 1) ∈
√
I ×R2 =

√
I × R2 or (b, 1)(c, 1) = (bc, 1) ∈

√
I ×R2 =

√
I × R2.

It follows that ab ∈ I or bc ∈
√
I or ac ∈

√
I, a contradiction. Thus I is a

2-absorbing primary ideal of R1.
(3)⇒(1) Let I be a 2-absorbing primary ideal of R1. Then I × R2 is a 2-

absorbing primary ideal of R by [7, Theorem 2.23], and therefore (1) holds. �

Theorem 2.22. Let R1 and R2 be commutative rings with 1 6= 0, I1, I2 be

nonzero ideals of R1 and R2, respectively, and R = R1 × R2. If I1 × I2 is a

proper ideal of R, then the following statements are equivalent.

(1) I1 × I2 is a weakly 2-absorbing primary ideal of R.
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(2) I1 = R1 and I2 is a 2-absorbing primary ideal of R1 or I2 = R2 and

I1 is a 2-absorbing primary ideal of R1 or I1, I2 are primary ideals of

R1, R2, respectively.

(3) I1 × I2 is a 2-absorbing primary ideal of R.

Proof. (1)⇒(2) Assume that I1 × I2 is a weakly 2-absorbing primary ideal of
R. If I1 = R1 (I2 = R2), then I2 is a 2-absorbing primary ideal of R2 (I1
is a 2-absorbing primary ideal of R1) by Theorem 2.21. So we may assume
that I1 6= R1 and I2 6= R2. Let a, b ∈ R2 such that ab ∈ I2 and let 0 6=
x ∈ I1. Then 0 6= (x, 1)(1, a)(1, b) = (x, ab) ∈ I1 × I2. Since I1 is proper,
(1, a)(1, b) = (1, ab) /∈

√
I1 × I2. Hence we have (x, 1)(1, a) = (x, a) ∈ I1×I2 or

(x, 1)(1, b) = (x, b) ∈
√
I1 × I2, and so a ∈ I2 or b ∈

√
I2. Thus I2 is a primary

ideal of R2. Similarly, it can be easily shown that I1 is a primary ideal of R1.
(2)⇒(3) The proof is clear by [7, Theorem 2.23].
(3)⇒(1) It is clear. �

Theorem 2.23. Let R1 and R2 be commutative rings with 1 6= 0 and R =
R1 ×R2. Then a nonzero proper ideal I of R is a weakly 2-absorbing primary

ideal of R that is not 2-absorbing primary if and only if one of the following

conditions holds.

(1) I = I1 × I2, where I1 6= R1 is a nonzero weakly primary ideal of R1

that is not primary and I2 = 0 is a primary ideal of R2.
(2) I = I1 × I2, where I2 6= R2 is a nonzero weakly primary ideal of R2

that is not primary and I1 = 0 is a primary ideal of R1.

Proof. Suppose that I is a nonzero weakly 2-absorbing primary ideal of R that
is not 2-absorbing primary ideal. Then I = I1 × I2 for some ideals I1, I2 of R1

and R2, respectively. Assume that I1 6= 0 and I2 6= 0. Then I is a 2-absorbing
primary ideal of R by Theorem 2.22, a contradiction. Therefore I1 = 0 or
I2 = 0. Without loss of generality we may assume that I2 = 0. We show that
I2 = 0 is a primary ideal of R2. Let a, b ∈ R2 such that ab ∈ I2, and let
0 6= x ∈ I1. Since 0 6= (x, 1)(1, a)(1, b) = (x, ab) ∈ I and (1, ab) 6∈

√
I, we

obtain (x, a) = (x, 1)(1, a) ∈ I or (x, b) = (x, 1)(1, b) ∈
√
I, and so a ∈ I2 or

b ∈
√
I2. Thus I2 = 0 is a primary ideal of R2. Next, we show that I1 is a weakly

primary ideal of R1. Observe that I1 6= R1. For if I1 = R1, then R1 × 0 is a
2-absorbing primary ideal of R by [7, Theorem 2.23]. Let 0 6= ab ∈ I1 for some
a, b ∈ R1. Since 0 6= (a, 1)(b, 1)(1, 0) ∈ I1 × 0 and (ab, 1) 6∈ I1 × 0, we conclude

(a, 0) = (a, 1)(1, 0) ∈
√
I1 × 0 =

√
I or (b, 0) = (b, 1)(1, 0) ∈

√
I1 × 0 =

√
I.

Thus a ∈ I1 or b ∈
√
I1, and therefore I1 is a weakly primary ideal of R1. Now,

we show that I1 is not primary. Suppose that I1 is a primary ideal of R1. Since
I2 = {0} is a primary ideal of R2, we conclude that I = I1× I2 is a 2-absorbing
primary ideal of R by [7, Theorem 2.23], a contradiction. Thus I1 is a weakly
primary ideal of R1 that is not primary.

Conversely, suppose that (1) holds. Assume that (0, 0) 6= (a, a′)(b, b′)(c, c′) ∈
I = I1× 0. Since a′b′c′ = 0 and (0, 0) 6= (a, a′)(b, b′)(c, c′) ∈ I1× 0, we conclude
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that abc 6= 0. Assume (a, a′)(b, b′) 6∈ I. We consider three cases. Case one:
Suppose that ab 6∈ I1, but a

′b′ = 0. Since I1 is a weakly primary ideal of R1, we
have c ∈

√
I1. Since I2 = 0 is a primary ideal of R2, we have a

′ = 0 or b′ ∈
√
I2.

Thus (a, a′)(c, c′) ∈
√
I or (b, b′)(c, c′) ∈

√
I. Case two: Suppose that ab 6∈ I1

and a′b′ 6= 0. Then (c, c′) ∈
√
I1 ×

√
0 =

√
I. Thus (a, a′)(c, c′) ∈

√
I or

(b, b′)(c, c′) ∈
√
I. Case three: Suppose that ab ∈ I1, but a′b′ 6= 0. Since

0 6= ab ∈ I1 and I1 is a weakly primary ideal of R1, we have a ∈ I1 or b ∈
√
I1.

Since a′b′ 6= 0 and I2 = 0 is a primary ideal of R2, we have c′ ∈
√
I2. Thus

(a, a′)(c, c′) ∈
√
I or (b, b′)(c, c′) ∈

√
I. Hence I is a weakly 2-absorbing primary

ideal of R. Since I1 is not a primary ideal of R1, I is not a 2-absorbing primary
ideal of R by [7, Theorem 2.23]. �

Theorem 2.24. Let R = R1 ×R2 × · · · ×Rn, where 2 < n < ∞, and R1, R2,

. . . , Rn are commutative rings with 1 6= 0. Let I be a nonzero proper ideal of

R. Then the following statements are equivalent.

(1) I is a weakly 2-absorbing primary ideal of R.

(2) I is a 2-absorbing primary ideal of R.
(3) Either I = ×n

j=1Ij such that for some k ∈ {1, . . . , n}, Ik is a 2-

absorbing primary ideal of Rk, and Ij = Rj for every j ∈ {1, . . . , n} −
{k}, or I = ×n

j=1Ij such that for some k, m ∈ {1, . . . , n}, Ik is a pri-

mary ideal of Rk, Im is a primary ideal of Rm, and Ij = Rj for every

j ∈ {1, . . . , n} − {k,m}.
Proof. (1)⇔(2) Since I is a proper ideal of R, we have I = I1 × · · · × In,
where every Ii is an ideal of Ri, and Ij 6= Rj for some j ∈ {1, . . . , n}.
Suppose that I = I1 × I2 × · · · × In 6= 0 is a weakly 2-absorbing primary
ideal of R. Then there is an element 0 6= (a1, a2, . . . , an) ∈ I. Hence 0 6=
(a1, a2, . . . , an) = (a1, 1, 1, . . . , 1)(1, a2, 1, . . . , 1) · · · (1, 1, . . . , an) ∈ I implies

there is a j ∈ {1, . . . , n} such that bj = 1 and (b1, . . . , bn) ∈
√
I =

√
I1 × · · · ×√

In, where b1, . . . , bn ∈ {1, a1, . . . , an}. Hence
√

Ij = Rj , and so Ij = Rj .

Thus
√
I 6=

√
0, and hence by Corollary 2.11, I is a 2-absorbing primary ideal.

The converse is obvious.
(2)⇔(3) It is clear by [7, Theorem 2.24]. �

Theorem 2.25. Let R1, R2 and R3 be commutative rings with 1 6= 0, and

let R = R1 × R2 × R3. Then every proper ideal of R is a weakly 2-absorbing

primary ideal of R if and only if R1, R2, and R3 are fields.

Proof. Suppose that every proper ideal of R is a weakly 2-absorbing primary
ideal of R. Without loss of generality, we may assume that R1 is not a field.
Then R1 has a nonzero proper ideal I. Thus J = I×0×0 is a weakly 2-absorbing
primary ideal of R, which is impossible by Theorem 2.24.

Conversely, suppose that R1, R2, R3 are fields. Then every nonzero proper
ideal of R is a 2-absorbing ideal by [5, Theorem 3.4]. Since 0 is always weakly
2-absorbing primary, the proof is completed. �
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Theorem 2.26. Suppose that every proper ideal of R is a weakly 2-absorbing

primary ideal. Then R has at most three incomparable (under inclusion) prime

ideals.

Proof. Deny. Then there are M1, M2, M3, and M4 incomparable prime ideals
of R. Let I = M1 ∩ M2 ∩ M3. Hence

√
I =

√
M1 ∩

√
M2 ∩

√
M3. Thus

√
I

is not a 2-absorbing ideal of R by [3, Theorem 2.5]. So I is not a 2-absorbing
primary ideal of R by [7, Theorem 2.2]. Hence I3 = 0 by Theorem 2.10. Thus
I3 = M3

1M
3
2M

3
3 = 0 ⊆ M4 implies that M1 ⊆ M4 or M2 ⊆ M4 or M3 ⊆ M4, a

contradiction. Thus R has at most three incomparable (under inclusion) prime
ideals. �

In view of Theorem 2.26, we have the following result.

Corollary 2.27. Suppose that every proper ideal of R is a weakly 2-absorbing

primary ideal. Then R has at most three maximal ideals.

Definition 2.28. Let I be a weakly 2-absorbing primary ideal ofR and suppose
that I1I2I3 ⊆ I for some ideals I1, I2, and I3 of R. We say I is free triple-zero

with respect to I1I2I3 if (a, b, c) is not a triple-zero of I for every a ∈ I1, b ∈ I2,
and c ∈ I3.

Conjecture 1. Let I be a weakly 2-absorbing primary ideal of R and suppose

that 0 6= I1I2I3 ⊆ I for some ideals I1, I2, and I3 of R. Then I is free triple-zero

with respect to I1I2I3.

Lemma 2.29. Let I be a weakly 2-absorbing primary ideal of a ring R and

suppose that abJ ⊆ I for some elements a, b ∈ R and some ideal J of R such

that (a, b, c) is not a triple-zero of I for every c ∈ J . If ab 6∈ I, then aJ ⊆
√
I

or bJ ⊆
√
I.

Proof. Suppose that aJ 6⊆
√
I and bJ 6⊆

√
I. Then aj1 6∈

√
I and bj2 6∈

√
I for

some j1, j2 ∈ J . Since (a, b, j1) is not a triple-zero of I and abj1 ∈ I and ab 6∈ I

and aj1 6∈
√
I, we have bj1 ∈

√
I. Since (a, b, j2) is not a triple-zero of I and

abj2 ∈ I and ab 6∈ I and bj2 6∈
√
I, we have aj2 ∈

√
I. Now, since (a, b, j1 + j2)

is not a triple-zero of I and ab(j1+ j2) ∈ I and ab 6∈ I, we have a(j1+ j2) ∈
√
I

or b(j1 + j2) ∈
√
I. Suppose that a(j1 + j2) = aj1 + aj2 ∈

√
I. Since aj2 ∈

√
I ,

we have aj1 ∈
√
I, a contradiction. Suppose that b(j1 + j2) = bj1 + bj2 ∈

√
I .

Since bj1 ∈
√
I, we have bj2 ∈

√
I, a contradiction again. Thus aJ ⊆

√
I or

bJ ⊆
√
I. �

Remark 1. Let I be a weakly 2-absorbing primary ideal of R and suppose that
I1I2I3 ⊆ I for some ideals I1, I2, and I3 of R such that I is free triple-zero with
respect to I1I2I3. Then if a ∈ I1, b ∈ I2, and c ∈ I3, then ab ∈ I or ac ∈

√
I or

bc ∈
√
I.

Let I be a weakly 2-absorbing primary ideal of R. In view of the below result,
one can see that Conjecture 1 is valid if and only if whenever 0 6= I1I2I3 ⊆ I
for some ideals I1, I2, I3 of R, then I1I2 ⊆ I or I2I3 ⊆

√
I or I1I3 ⊆

√
I.
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Theorem 2.30. Let I be a weakly 2-absorbing primary ideal of R and suppose

that 0 6= I1I2I3 ⊆ I for some ideals I1, I2, I3 of R such that I is free triple-zero

with respect to I1I2I3. Then I1I2 ⊆ I or I2I3 ⊆
√
I or I1I3 ⊆

√
I.

Proof. Suppose that I is a weakly 2-absorbing primary ideal of R and 0 6=
I1I2I3 ⊆ I for some ideals I1, I2, I3 of R such that I is free triple-zero with
respect to I1I2I3. Suppose that I1I2 6⊆ I. By Remark 1, we proceed with the
same argument as in the proof of [7, Theorem 2.19]. We show that I1I3 ⊆

√
I

or I2I3 ⊆
√
I. Suppose that neither I1I3 ⊆

√
I nor I2I3 ⊆

√
I. Then there

are q1 ∈ I1 and q2 ∈ I2 such that neither q1I3 ⊆
√
I nor q2I3 ⊆

√
I. Since

q1q2I3 ⊆ I and neither q1I3 ⊆
√
I nor q2I3 ⊆

√
I, we have q1q2 ∈ I by Lemma

2.29.
Since I1I2 6⊆ I, we have ab 6∈ I for some a ∈ I1, b ∈ I2. Since abI3 ⊆ I and

ab 6∈ I, we have aI3 ⊆
√
I or bI3 ⊆

√
I by Lemma 2.29. We consider three

cases. Case one: Suppose that aI3 ⊆
√
I, but bI3 6⊆

√
I. Since q1bI3 ⊆ I

and neither bI3 ⊆
√
I nor q1I3 ⊆

√
I, we conclude that q1b ∈ I by Lemma

2.29. Since (a + q1)bI3 ⊆ I and aI3 ⊆
√
I, but q1I3 6⊆

√
I, we conclude that

(a + q1)I3 6⊆
√
I. Since neither bI3 ⊆

√
I nor (a + q1)I3 ⊆

√
I, we conclude

that (a+ q1)b ∈ I by Lemma 2.29. Since (a+ q1)b = ab+ q1b ∈ I and q1b ∈ I,

we conclude that ab ∈ I, a contradiction. Case two: Suppose that bI3 ⊆
√
I ,

but aI3 6⊆
√
I. Since aq2I3 ⊆ I and neither aI3 ⊆

√
I nor q2I3 ⊆

√
I, we

conclude that aq2 ∈ I. Since a(b+ q2)I3 ⊆ I and bI3 ⊆
√
I, but q2I3 6⊆

√
I, we

conclude that (b + q2)I3 6⊆
√
I. Since neither aI3 ⊆

√
I nor (b + q2)I3 ⊆

√
I ,

we conclude that a(b+ q2) ∈ I by Lemma 2.29. Since a(b+ q2) = ab+ aq2 ∈ I
and aq2 ∈ I, we conclude that ab ∈ I, a contradiction. Case three: Suppose
that aI3 ⊆

√
I and bI3 ⊆

√
I. Since bI3 ⊆

√
I and q2I3 6⊆

√
I, we conclude

that (b + q2)I3 6⊆
√
I. Since q1(b + q2)I3 ⊆ I and neither q1I3 ⊆

√
I nor

(b+ q2)I3 ⊆
√
I, we conclude that q1(b+ q2) = q1b+ q1q2 ∈ I by Lemma 2.29.

Since q1q2 ∈ I and q1b+q1q2 ∈ I, we conclude that bq1 ∈ I. Since aI3 ⊆
√
I and

q1I3 6⊆
√
I, we conclude that (a+q1)I3 6⊆

√
I. Since (a+q1)q2I3 ⊆ I and neither

q2I3 ⊆
√
I nor (a+q1)I3 ⊆

√
I, we conclude that (a+q1)q2 = aq2+q1q2 ∈ I by

Lemma 2.29. Since q1q2 ∈ I and aq2+q1q2 ∈ I, we conclude that aq2 ∈ I. Now,
since (a+q1)(b+q2)I3 ⊆ I and neither (a+q1)I3 ⊆

√
I nor (b+q2)I3 ⊆

√
I, we

conclude that (a+ q1)(b+ q2) = ab+aq2+ bq1+ q1q2 ∈ I by Lemma 2.29. Since
aq2, bq1, q1q2 ∈ I, we have aq2 + bq1 + q1q2 ∈ I. Since ab+ aq2 + bq1 + q1q2 ∈ I
and aq2 + bq1 + q1q2 ∈ I, we conclude that ab ∈ I, a contradiction. Hence
I1I3 ⊆

√
I or I2I3 ⊆

√
I. �

3. A visit to weakly prime ideals and weakly 2-absorbing ideals

Definition 3.1. Let I be a weakly prime ideal of R. We say (a, b) is a twin-zero

of I if ab = 0, a 6∈ I, and b 6∈ I.

In this section, we use the concept “twin-zero”in order to give alternative
proofs to some results in [2].
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Note that if I is a weakly prime ideal of R that is not a prime ideal, then I
has a twin-zero (a, b) for some a, b ∈ R.

Theorem 3.2. Let I be a weakly prime ideal of R and suppose that (a, b) is a

twin-zero of I for some a, b ∈ R. Then aI = bI = 0.

Proof. Suppose that aI 6= 0. Then there exists i ∈ I such that ai 6= 0. Hence
a(b + i) 6= 0. Since a 6∈ I and I is weakly prime, we have b + i ∈ I, and hence
b ∈ I, a contradiction. Thus aI = 0. Similarly, it can be easily verified that
bI = 0. �

Theorem 3.3 ([2, Theorem 1]). Let I be a weakly prime ideal of R. If I is

not prime, then I2 = 0.

Proof. Let (a, b) be a twin-zero of I. Suppose that i1i2 6= 0 for some i1, i2 ∈ I.
Then by Theorem 3.2, we have (a+ i1)(b+ i2) = i1i2 6= 0. Thus (a+ i1) ∈ I or
(b+ i2) ∈ I, and hence a ∈ I or b ∈ I, a contradiction. Therefore I2 = 0. �

Theorem 3.4 ([2, Theorem 4]). Let I be a weakly prime ideal of R. If I is

not prime, then I ⊆
√
0 and I

√
0 = 0.

Proof. Suppose that I is not prime. Then I ⊆
√
0 by Theorem 3.3. Let w ∈

√
0.

If w ∈ I, then wI = 0 by Theorem 3.3. Thus assume that w 6∈ I and wI 6= 0.
Hence wi 6= 0 for some i ∈ I. Let m be the least positive integer such that
wm = 0. Since w(wm−1 + i) = wi 6= 0 and w 6∈ I, we have wm−1 + i ∈ I, and
hence wm−1 ∈ I. Since 0 6= wm−1 ∈ I and I is weakly prime, we conclude that
w ∈ I, a contradiction. Thus wI = 0. Hence I

√
0 = 0. �

Theorem 3.5. Let I be a weakly prime ideal of R and suppose that (a, b) is a

twin-zero of I. If ar ∈ I for some r ∈ R, then ar = 0.

Proof. Suppose that 0 6= ar ∈ I for some r ∈ R. Then r ∈ I. Thus ar = 0 by
Theorem 3.2, a contradiction. �

Theorem 3.6. Let I be a weakly prime ideal of R and suppose that AB ⊆ I
for some ideals A,B of R. If I has a twin-zero (a, b) for some a ∈ A and b ∈ B,

then AB = 0.

Proof. Suppose that I has a twin-zero (a, b) for some a ∈ A and b ∈ B and
assume that cd 6= 0 for some c ∈ A and d ∈ B. Then c ∈ I or d ∈ I. Without
loss of generality, we may assume that c ∈ I. Since I2 = 0 by Theorem 3.2 and
0 6= cd ∈ I, we conclude that d 6∈ I. Since ad ∈ I, we have ad = 0 by Theorem
3.5. Since (a + c)d = cd 6= 0 and d 6∈ I, we have a + c ∈ I. Hence a ∈ I, a
contradiction. Thus AB = 0. �

Theorem 3.7 ([2, Theorem 3(4)]). Let I be a weakly prime ideal of R and

suppose that 0 6= AB ⊆ I for some ideals A,B of R. Then A ⊆ I or B ⊆ I.
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Proof. Since 0 6= AB ⊆ I, we conclude that for every a ∈ A and b ∈ B, we
have a ∈ I or b ∈ I by Theorem 3.6. Without loss of generality, assume that
B 6⊆ I. Hence b 6∈ I for some b ∈ B. Let a ∈ A. Since ab ∈ I and b 6∈ I, we
have a ∈ I. Thus A ⊆ I. �

We recall the following definition from [6].

Definition 3.8. Let I be a weakly 2-absorbing ideal of a ring R and a, b, c ∈ R.
We say (a, b, c) is a triple-zero of I if abc = 0, ab 6∈ I, bc 6∈ I, and ac 6∈ I.

Definition 3.9. Let I be a weakly 2-absorbing ideal of R and suppose that
I1I2I3 ⊆ I for some ideals I1, I2, and I3 of R. We say I is free triple-zero with

respect to I1I2I3 if (a, b, c) is not a triple-zero of I for every a ∈ I1, b ∈ I2, and
c ∈ I3.

Conjecture 2. Let I be a weakly 2-absorbing ideal of R and suppose that

0 6= I1I2I3 ⊆ I for some ideals I1, I2, and I3 of R. Then I is free triple-zero

with respect to I1I2I3.

Lemma 3.10. Let I be a weakly 2-absorbing ideal of a ring R and suppose that

abJ ⊆ I for some elements a, b ∈ R and some ideal J of R such that (a, b, c) is
not a triple-zero of I for every c ∈ J . If ab 6∈ I, then aJ ⊆ I or bJ ⊆ I.

Proof. Suppose that aJ 6⊆ I and bJ 6⊆ I. Then aj1 6∈ I and bj2 6∈ I for some
j1, j2 ∈ J . Since (a, b, j1) is not a triple-zero of I and abj1 ∈ I and ab 6∈ I and
aj1 6∈ I, we have bj1 ∈ I. Since (a, b, j2) is not a triple-zero of I and abj2 ∈ I
and ab 6∈ I and bj2 6∈ I, we have aj2 ∈ I. Now, since (a, b, j1 + j2) is not
a triple-zero of I and ab(j1 + j2) ∈ I and ab 6∈ I, we have a(j1 + j2) ∈ I or
b(j1 + j2) ∈ I. Suppose that a(j1 + j2) = aj1 + aj2 ∈ I. Since aj2 ∈ I, we
have aj1 ∈ I, a contradiction. Suppose that b(j1 + j2) = bj1 + bj2 ∈ I. Since
bj1 ∈ I, we have bj2 ∈ I, a contradiction again. Thus aJ ⊆ I or bJ ⊆ I. �

Remark 2. Let I be a weakly 2-absorbing ideal ofR and suppose that I1I2I3 ⊆ I
for some ideals I1, I2, and I3 of R such that I is free triple-zero with respect to
I1I2I3. Then if a ∈ I1, b ∈ I2, and c ∈ I3, then ab ∈ I or ac ∈ I or bc ∈ I.

Let I be a weakly 2-absorbing ideal of R. In view of the below result, one
can see that Conjecture 2 is valid if and only if whenever 0 6= I1I2I3 ⊆ I for
some ideals I1, I2, I3 of R, then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I.

Theorem 3.11. Let I be a weakly 2-absorbing ideal of R and suppose that

0 6= I1I2I3 ⊆ I for some ideals I1, I2, I3 of R such that I is free triple-zero with

respect to I1I2I3. Then I1I2 ⊆ I or I2I3 ⊆ I or I1I3 ⊆ I.

Proof. Suppose that I is a weakly 2-absorbing ideal of R and 0 6= I1I2I3 ⊆ I
for some ideals I1, I2, I3 of R such that such that I is free triple-zero with
respect to I1I2I3. Suppose that I1I2 6⊆ I. By Remark 2, we proceed with a
similar argument as in the proof of [7, Theorem 2.19]. We show that I1I3 ⊆ I
or I2I3 ⊆ I. Suppose that neither I1I3 ⊆ I nor I2I3 ⊆ I. Then there are
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q1 ∈ I1 and q2 ∈ I2 such that neither q1I3 ⊆ I nor q2I3 ⊆ I. Since q1q2I3 ⊆ I
and neither q1I3 ⊆ I nor q2I3 ⊆ I, we have q1q2 ∈ I by Lemma 3.10.

Since I1I2 6⊆ I, we have ab 6∈ I for some a ∈ I1, b ∈ I2. Since abI3 ⊆ I
and ab 6∈ I, we have aI3 ⊆ I or bI3 ⊆ I by Lemma 3.10. We consider three
cases. Case one: Suppose that aI3 ⊆ I, but bI3 6⊆ I. Since q1bI3 ⊆ I and
neither bI3 ⊆ I nor q1I3 ⊆ I, we conclude that q1b ∈ I by Lemma 3.10. Since
(a+q1)bI3 ⊆ I and aI3 ⊆ I, but q1I3 6⊆ I, we conclude that (a+q1)I3 6⊆ I. Since
neither bI3 ⊆ I nor (a+ q1)I3 ⊆ I, we conclude that (a+ q1)b ∈ I by Lemma
3.10. Since (a + q1)b = ab + q1b ∈ I and q1b ∈ I, we conclude that ab ∈ I, a
contradiction. Case two: Suppose that bI3 ⊆ I, but aI3 6⊆ I. Since aq2I3 ⊆ I
and neither aI3 ⊆ I nor q2I3 ⊆ I, we conclude that aq2 ∈ I. Since a(b+q2)I3 ⊆
I and bI3 ⊆ I, but q2I3 6⊆ I, we conclude that (b + q2)I3 6⊆ I. Since neither
aI3 ⊆ I nor (b+q2)I3 ⊆ I, we conclude that a(b+q2) ∈ I by Lemma 3.10. Since
a(b+ q2) = ab+ aq2 ∈ I and aq2 ∈ I, we conclude that ab ∈ I, a contradiction.
Case three: Suppose that aI3 ⊆ I and bI3 ⊆ I. Since bI3 ⊆ I and q2I3 6⊆ I,
we conclude that (b + q2)I3 6⊆ I. Since q1(b + q2)I3 ⊆ I and neither q1I3 ⊆ I
nor (b+q2)I3 ⊆ I, we conclude that q1(b+q2) = q1b+q1q2 ∈ I by Lemma 3.10.
Since q1q2 ∈ I and q1b+ q1q2 ∈ I, we conclude that bq1 ∈ I. Since aI3 ⊆ I and
q1I3 6⊆ I, we conclude that (a+ q1)I3 6⊆ I. Since (a + q1)q2I3 ⊆ I and neither
q2I3 ⊆ I nor (a + q1)I3 ⊆ I, we conclude that (a + q1)q2 = aq2 + q1q2 ∈ I by
Lemma 3.10. Since q1q2 ∈ I and aq2+q1q2 ∈ I, we conclude that aq2 ∈ I. Now,
since (a + q1)(b + q2)I3 ⊆ I and neither (a + q1)I3 ⊆ I nor (b + q2)I3 ⊆ I, we
conclude that (a+ q1)(b+ q2) = ab+aq2+ bq1+ q1q2 ∈ I by Lemma 3.10. Since
aq2, bq1, q1q2 ∈ I, we have aq2 + bq1 + q1q2 ∈ I. Since ab+ aq2 + bq1 + q1q2 ∈ I
and aq2 + bq1 + q1q2 ∈ I, we conclude that ab ∈ I, a contradiction. Hence
I1I3 ⊆ I or I2I3 ⊆ I. �
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